

Grid Related Activities at Caltech

Koen Holtman

Caltech/CMS

PPDG meeting, Argonne July 13-14, 2000

1

Caltech group works on:

- Developing the (Data) Grid
 - Mostly in collaborative efforts
 - Focus on OODBs, regional centres, WAN

- CMS ORCA production
 - To support detector design studies, trigger design studies
 - Real, current needs
 - · TBs of data

- People
 - People who spend most of their time on grid related work:
 - · At Caltech: Julian Bunn, Takako Hickey, Koen Holtman
 - At CERN payed by Caltech: Iosif Legrand, Asad Samar, Mehnaz Hafeez (40%), Philippe Galvez, Gregory Denis
 - · Many others spend smaller parts of their time
- Datasets
 - · Currently we have
 - ~3 TB of CMS physics data (mostly CMSIM)
 - ~300 GB persistent physics data
- Software
 - · CMS software: CMSIM, ORCA, IGUANA
 - Objectivity (C++&Java), Globus
 - [Condor]

3

- Hardware
 - Major CPU:
 - HP X-class (256 CPU) and V-class (128 CPU) systems (Major use for CMS (CMSIM) production planned)
 - Currently using a Condor system at Wisconsin (~50 CPU used during our production)
 - · Will build a Linux farm at Caltech
 - · Order in July: 64-128 CPU, Caltech+SDSC
 - Rising to 256 CPU if Caltech is one of the Tier2 centres
 - Major Storage:
 - HPSS system at CACR (~350 TB)
 - ~1 TB on disk arrays
 - Networking:
 - Many connections -- of particular interest:
 - NTON link to SLAC (2xOC12, 1244 Mbit/s)
 - US- CERN link (45 Mbit/s, probably 155 Mbit/s in Fall)

ORCA production

- Production at Caltech
- Will generate about 1,000,000 events (~1TB) in summer
- Serves as testbed/motivation for many activities
- · Participation in production elsewhere
 - · Involves a lot of file transfers over network
- Expect to gain valuable experience in running (distributed) production (e.g. To be fed into MONARC)
- Currently using Condor system at Winsconsin (Vladimir Litvin)
- MONARC: see talk by Iosif Legrand

5

- File based replication system for distributed ORCA production
 - See talk by Asad Samar
 - Mostly done by CERN-based people (EU DataGrid pilot)
 - First prototype August 2000 (to be used in Fall production)
 - Uses Globus components

Object based replication

- See (later) talk by Koen Holtman
- Object (event subset) based replication important for distributed analysis, Tier 2 regional centres and smaller
- Not a production effort, initial work targeted at demonstration prototype
- First demo around Autumn 2000
- Uses Globus components
- Active contacts with Globus team in both efforts

- WAN file replication tests
 - Julian Bunn, Philippe Galvez (network monitoring)
 - Also together with SLAC: see next slide
 - Goals: investigate WAN issues, tune file transport to maximise WAN throughput (TCP window size, routers?)
 - Specific tests (using Globus GSIftp, ORCA files)
 - Caltech-Argonne: tests complete (3.9 Mbytes/s)
 - Caltech-INFN: initial tests complete
 - Will install HPSS enabled version of Globus FTP at CACR as soon as it becomes available

 | San (single stream to Argonne) |

Grid activities 4

- WAN file replication tests 2
 - For PPDG 100 MB/s milestone, together with Davide Salomoni and Les Cottrell at SLAC
 - NTON link to SLAC (2xOC12, 2x622 Mbit/s = 1244 Mbit/s)
 - Latest results (Julian Bunn):
 - · Achieved 380 Mbits/s (47 MB/s) memory-to-memory between Caltech and SLAC over a single OC12 link
 - · With a single TCP/IP stream using the iperf tool

Distributed resource management

- Takako Hickey
- · Research agenda:
 - Fault-tolerant service (special focus on network partition)
 - · Data-aware scheduling, Scalable software structure
- Prototype Execution Service:
 - · Submit, monitor, kill jobs individually or as a set
 - Service tolerates all types of failures (network partition, fail-stop, message omissions etc.)
 - · Mechanism for placing jobs near data
 - · Being tested with ORCA production software (with Vladimir Litvin)
 - · Works with 30 CPUs, being debugged for 60 CPUs.
- Future Work:
 - Study of data-aware scheduling policies using MONARC simulation tool (with Iosif Legrand)
 - · Extending prototype for scalability

9

VRVS

- Philippe Galvez, Gregory Denis at CERN
- Tools for videoconferencing and collaborative work
- Part R&D, part production
- Also performing a lot of WAN network monitoring

ALDAP

- Collaboration between Caltech/CMS and JHU/SDSS
 - · Both groups are using Objectivity
- Goal: share experience, technology, develop new ways of organising (object) data

// this query is slow: ELECT roww.colw FROM exP

ounts[0] < 18 && modelCounts[0] > 0 && rowv > 1 c_type == AR_08JECT_TYPE_0ALAXY

- SX: data mining tool used in SDSS
 - Use case is similar to end user physics analysis on tag objects and AOD (10 KB) objects
 - Uses an SQL like language
- Currently installing SX tool at Caltech
- Will make replica of SDSS data at Caltech (40 GB now, 200 GB in half a year)
- Doing comparisons between OODBMS and RDBMS (Objectivity and MS SQL Server) for tag/ntuple type analysis

Grid related project coordination

- Lot of resources devoted to coordination/synchronisation
 - · Between GryPhyn, PPDG, EU DataGrid, MONARC, RD45, ALDAP,
 -
- Harvey Newman, Julian Bunn, Asad Samar